Induction

Tanya Khovanova

April 27, 2009

Class Discussion

Mathematical Induction.

Warm Up

Exercise 1. A stick has two ends. If you cut off one end, how many ends will the stick have left?

Exercise 2. A hypotenuse of a right triangle is 10 inches, and the altitude having the hypotenuse as its base is 6 inches. Find the area of the triangle.

Exercise 3. What is the smallest prime divisor of $5^{2009}+1$?

Problem Set

Exercise 4. Use the mathematical induction to prove that the Fibonacci sequence F_{n} satisfies $\sum_{i=0}^{n} F_{i}=F_{n+2}-1$.

Exercise 5. Use the mathematical induction to prove that the Fibonacci sequence F_{n} satisfies $F_{n+1}^{2}=F_{n} F_{n+2}+(-1)^{n}$.

Exercise 6. For integers a and b, prove that if $a^{2}+b^{2}$ is divisible by 3 , then it is divisible by 9 .

Exercise 7. Use the mathematical induction to prove that $1+3+5+\ldots+$ $(2 n-1)=n^{2}$.

Exercise 8. How many zeroes at the end does 100 ! have?
Exercise 9. Use the mathematical induction to prove that $1 \cdot 1!+2 \cdot 2!+$ $\ldots+n \cdot n!=(n+1)!-1$.

Exercise 10. USSR bank has an unlimited number of 3 -ruble and 5 -ruble bills. Prove that it can pay any number of rubles starting from 8 exactly.

Exercise 11. USAMO 2003. Use the math induction to prove that for every positive integer n there exists an n-digit number divisible by 5^{n} all of whose digits are odd.

Exercise 12. Assume you have a chocolate bar consisting, as usual, of a number of squares arranged in a rectangular pattern. Your task is to split the bar into small squares (always breaking along the lines between the squares) with a minimum number of breaks. How many will it take?

