Sequences

Tanya Khovanova

January 26, 2009

How to prove that all odd numbers are prime ?
Physicist: 3 is prime, 5 is prime, 7 is prime, 9 is an experimental error... Quantum Physicist: All numbers are equally prime and non-prime until observed.
Professor: 3 is prime, 5 is prime, 7 is prime, and the rest are left as an exercise for the student.
Measure nontheorist: There are exactly as many odd numbers as primes, and exactly one even prime (namely 2), so there must be exactly one odd nonprime (namely 1).
Computer Scientist: 10 is prime, 11 is prime, 101 is prime...
Programmer: 3 is prime, 5 is prime, 7 is prime, 9 will be fixed in the next release, ...
Windows programmer: 3 is prime. Wait...
Computer programmer: 3 is prime, 5 is prime, 7 is ...
Computational linguist: 3 is an odd prime, 5 is an odd prime, 7 is an odd prime, 9 is a very odd prime, ...
Philosopher: Why don't we just call all the odd numbers prime and call all the prime numbers odd, that way all the odd numbers would be prime.
Statistician: 100% of the sample $5,13,37,41$ and 53 is prime, so all odd numbers must be prime.

Class Discussion

Sequences. Continuing sequences. Complexity of a sequence.

Warm Up

Exercise 1. The day before yesterday I was 25 and the next year I will be 28. (This is true only one day in a year.) When was I born?

Exercise 2. What mathematical symbol can be put between 5 and 9 , to get a number bigger than 5 and smaller than 9 ?

Problem Set

Exercise 3. What is the next term of the following sequences:

1. $1,4,9,16,25$,
2. $1,3,6,10,15,21$,
3. 1, 1, 2, 3, 5, 8, 13,
4. $2,7,1,8,2,8,1,8,2$,
5. 1, 2, 3, 2, 1, 2, 3, 4, 2, 1, 2,
6. $1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1$,
7. $3,3,5,4,4,3,5,5,4,3$,
8. $1,3,4,7,11,18,29,47$,
9. $1,11,21,1211,111221,312211,13112221$,
10. $3,6,11,18,27,38,51$,
11. $1,2,6,20,70,252,924,3432,12870,48620$,
12. $1,2,2,3,3,4,4,4,5,5,5,6,6,6,6,7,7,7,7,8,8,8,8,9,9,9,9$,

Exercise 4. Prove that:

$$
\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\binom{n}{3}+\ldots+(-1)^{n-1}\binom{n}{n-1}+(-1)^{n}\binom{n}{n}=0 .
$$

