Remainders Modulo 9

Tanya Khovanova

May 10, 2010

Class Discussion

Romeo—Romeo.

- The sum of digits of n has the same remainder modulo 9 as n.
- Ten-digit numbers with all distinct digits are divisible by 9.
- Rearranging digits doesn't change the remainder modulo 9.
- Removing the leading digit and adding it to the rest of the number doesn't change the remainder mod 9.

Warm Up

Exercise 1. Let SOD(n) be the sum of the digits of n. Suppose f(n) is the result of iterating SOD many times until we get a single digit. That is, f(n) = SOD(SOD(SOD...(n)...)).

- Find $f(2^{2010})$.
- Find $f(3^{2010})$.
- Find $f(4^{2010})$.
- Find $f(5^{2010})$.
- Find $f(6^{2010})$.
- Find $f(7^{2010})$.
- Find $f(8^{2010})$.
- Find $f(9^{2010})$.
- Find $f(1234^{2009})$.

Exercise 2. A frog jumps along the line. First it jumped 1 cm, then 3 cm in the same or the opposite direction, then 5 cm. It continues with the sequence of odd numbers. Can it be back at the beginning after 14 jumps?

Exercise 3. Prove that for any natural number n, $4^n + 15n - 1$ is divisible by 9.

Exercise 4. Proof that the sum of the digits of a square can't be 1967.

Exercise 5. A number has three ones. All other digits are zeroes. Can it be a square?

Review

Exercise 6. In the year X a certain day of the mongth was never a Sunday. What day was that?

Exercise 7. Start with 7^{2010} . At each step, delete the leading digit, and add it to the remaining number.

- Repeat until a number with exactly 10 digits remains. Prove that this number has two equal digits.
- Repeat until you get a single digit. What is it?

Exercise 8. Is it possible for two different powers of 2 to have the same digits (in a different order)?

Competition Practice

Exercise 9. 1967 USSR Olympiad. Number b was produced by permuting digits in number a. Can a + b equal 999...999, a number written with 1967 nines? In a similar setting, prove that if $a + b = 10^{10}$ then a is divisible by 10.

Exercise 10. 1962 IMO. Determine the smallest possible integer x whose last decimal digit is 6, and if we erase this last 6 and put it in front of the remaining digits, we get four times x.