Combinatorial Identities

Tanya Khovanova

October 3, 2011

Two math teachers had a fight. It seems they couldn't divide something.

Class Discussion

Combinatorial Identities. Pascal's triangle. Combinatorial and formulae proofs:

- Symmetry: $\binom{n}{k}=\binom{n}{n-k}$ for $0 \leq k \leq n$.
- Pascal's rule: $\binom{n}{k}+\binom{n}{k+1}=\binom{n+1}{k+1}$.
- $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$.
- Two teams with m and k people: $\binom{n}{m}\binom{n-m}{k}=\binom{n}{k}\binom{n-k}{m}=\binom{n}{k+m}\binom{k+m}{m}$.

Warm-Up

Exercise 1. I'm a four-digit number! My 2nd digit is twice greater than my 3rd. The sum of all my digits is thrice greater than my last digit! The product of my 3 rd and 4 th digits is 12 times greater than the ratio of my 2nd to 3rd. What am I?

Exercise 2. Three men were in a boat. It capsized but only two got their hair wet. Why?

Combinatorial Identities

Exercise 3. Prove all the identities above using formulae.
Exercise 4. Find a combinatorial way to prove that $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0$.

Exercise 5. Why do powers of 11 look like lines in the Pascal's triangle: $11^{2}=121$ and $11^{3}=1331$? How much is 11^{4} ? Will the pattern continue? Explain.
Exercise 6. Suggest a way to continue the Pascal's triangle up.

Competition Practice

Exercise 7. MAML 2006. Draw six cards from a standard deck of 52 playing cards without replacement. How many distinct ways can you choose these six cards so that:

- The first card drawn is a spade,
- the second card drawn is also a spade,
- the third card drawn is a club,
- the fourth card drawn is a diamond,
- the fifth card drawn is a red card (either a diamond or a heart), and
- the sixth and final card drawn is an ace?

Exercise 8. MAML 2003. A sequence u is defined recursively as follows:

- $u_{0}=4$
- $u_{1}=7$
- $u_{n+2}=5 u_{n+1}-6 u_{n}$ for all $n \geq 2$.

Find the value of u_{x} for all $x \geq 2$. Your answer should be a function of x.
Exercise 9. My friend's phone number has area code 617. Unfortunately, in my phone book I have only six digits for the rest of the number. Somehow I skipped one of the digits. How many possibilities are there for her number?

Challenge Problems

Exercise 10. How many ways are there to place the following chess pieces on a chessboard, so they do not attack each other:

- two rooks
- two bishops
- two knights
- two queens
- two kings

