Extra Problems. I.

Tanya Khovanova

September 19, 2011

Fibonacci Numbers

Prove that for any integer n there exists a Fibonacci number divisible by n.

Zeroes and Ones

Prove that for any integer n there exists an integer consisting only of ones and zeroes that is divisible by n.

Three Sections

Divide your paper into three sections. In one section write the number 2, in a different section write the number 3. Thereafter, if two numbers are in distinct sections, write their product in the third section. For example, $6=2 \times 3$ goes into the initially empty section, then $12=2 \times 6$ goes into the same section with 3 , etc.

- Does the same number ever end up in two distinct sections?
- Obviously all numbers will be of the form $2^{k} 3^{j}$ with $j, k \geq 0$. Which of these numbers never appear?
- Describe numbers that appear in every section.

