Test Solutions

Tanya Khovanova

June 9, 2014

1 Results

29 participated. The easiest exercise was 5: 28 people solved it. The most difficult exercise was 10: 2.5 people solved it. The largest possible score was 24. The largest achieved score 22, the smallest: 1 . The average score is 8.8 . The scores:

- 22: Aditya Hoque
- 20: Joshua Michel
- 18: Andrew Machkasov
- 15: Ben Maron
- 13: Anjana Shenoy
- 9-12: nine people
- 5-7: eight people
- 2.5-4: six people
- 1: one person

2 Rewards

I already rewarded my students who made it to the AIME: Satwik Mekala, Aditya Hoque, Pranav Nagalamadaka, Kevin Cai, Anjana Shenoy, Zephyr Lucas, Andrew Machkasov.

In addition to that, the following students are rewarded:

- James Rose for the most gold stars.
- Joshua Michel for the second best score on the test.
- Ben Maron for an exceptional performance by my first year student.

Also, I would like to make an exception and reward Aditya again for an exceptional test performance.

3 Solutions to Exercises

Exercise 1. 1 point. A family photo contained: one grandfather, one grandmother, two fathers, two mothers, six children, four grandchildren, two brothers, two sisters, three sons, three daughters, one father-in-law, one mother-in-law, one daughter-in-law.

29 people you may think, but no! What is the fewest number of people that could have been in the photo?

Solution: 8. Four children (2 boys and 2 girls), their mother and father, the mother's mother, and the father's father.

Exercise 2. 1 point. Half of zero is still zero. What other number can be halved to make zero?

Solution: 8. Slice the number 8 horizontally in half. I gave the full credit for -0 .

Exercise 3. 1 point. A ship is docked in the harbor. Over the side hangs a rope ladder with rungs a foot apart. The tide rises at a rate of 9 inches per hour. At the end of six hours, how much of the rope ladder will still remain above water, assuming that 9 feet were above the water when the tide began to rise?

Solution: 9. Still 9 feet because the ladder will rise with the ship.
Exercise 4. 1 point. How can you make the following equation correct without changing it at all? $8+8=91$.

Solution: Look at it upside down: $16=8+8$.
Exercise 5. 1 point. At noon, you look at the clock in your bedroom. The big hand is on the five and the little hand is in between the 3 and the 4 . What time is it?

Solution: Noon. (However, if you answered that it's time to get a new clock, you're right, too.)

Exercise 6. 1 point. There are 2 hourglasses measuring 7 and 4 minutes respectively. How do you measure 5 minutes? Explain.

Solution: You can use the fact that $5=4 \cdot 3-7$.
Exercise 7. 1 point. How many numbers between 1 and 1000 are not divisible by 3 or 7 ?

Solution: In this range, there are 333 numbers divisible by 3,142 numbers divisible by 7,47 numbers divisible by 21 . In the range from 1 to 1000 inclusive, the number of numbers not divisible by 3 or 7 is $1000-333-142+47=$ 572. I forgot to say "inclusive", so the full credit will be given for either 572 or 570 .

Exercise 8. 1 point. How many 5-digit numbers are there with at least one odd digit?

Solution: There are $9 \cdot 10^{4}=900005$-digit numbers. There are $4 \cdot 5^{4}=$ 25005 -digit numbers with all even digits. Thus the answer is $90000-2500=$ 87500 .

Exercise 9. 2 point. A faulty car odometer proceeds from digit 4 to digit 6 , always skipping the digit 5 , regardless of position. For example, after traveling one mile the odometer changed from 000049 to 000060 . If the odometer now reads 002917, how many miles has the car actually traveled?

Solution: The odometer essentially counts in base 9, except digits over 5 should be adjusted. We need to translate 2816 from base 9 to base 10. The answer is 2121.

Exercise 10. 2 points. Count the number of subsets of $\{1,2, \ldots, 10\}$ that contain no consecutive integers. Explain why.

Solution: Denote A_{n} the number of subsets of $\{1,2, \ldots, n\}$ that contain no consecutive integers. Out of those, A_{n-1} subsets do not contain n and A_{n-2} subsets contain n. Thus $A_{n}=A_{n-1}+A_{n-2}$. Additionally, $A_{1}=2$ and $A_{2}=3$. Thus $A_{n}=F_{n+2}$: shifted Fibonacci numbers. The answer is $A_{10}=F_{12}=144$.

Exercise 11. 2 points. The 100 game: two players start from 0 and alternatively add a number from 1 to 10 to the sum. The player who reaches 100 wins. List all P-positions.

Solution: 1, 12, 23, 34, 45, 56, 67, 78, 89.
Exercise 12. 2 points. There are two people, A and B, each whom is either a knight or a knave. A makes the following statement: "At least one of us is a knave." What are A and B?

Solution: A can't be a knave, as in this case this statement is true. Therefore, A is a knight. A's statement is true, therefore B is a knave.

Exercise 13. 2 points. Is number $21^{10}-1$ divisible by 2200 ? Explain.
Solution: $21^{10}-1=441^{5}-1=(441-1)\left(441^{4}+441^{3}+441^{2}+441^{1}+1\right)$. The first factor is 440, and the last is divisible by 5 as each summand ends in 1 .

Exercise 14. 2 points. Tanya decided to buy balloons for her math party. There are 4 colors of balloons at the Star Market and Tanya needs 6 balloons. In how many ways can Tanya buy her balloons?

Solution: This is the bagel problem. The answer is $\binom{9}{3}=84$.
Exercise 15. 4 points. A group of five friends decide to exchange gifts as secret Santas. Each person writes their name on a piece of paper and puts it in a hat and then each person randomly draws a name from the hat to determine who has them as their secret Santa.

What is the probability that at least one person draws their own name?
Solution: We had this problem as a homework with 5 people, but no one solved it. The first person choses not his/her name with probability $3 / 4$. After that it becomes complicated. It depends on whether the first person chose the gift meant for the second person. On the other hand, we studied derangements: the number of ways for everyone to not get their own names. If the total number of people is four, then the names could cycle (there are 6 ways to do that), or there could be two pairs of people that swap their names (there are 3 ways to do that). The total number of derangements is 9 . The answer is $(24-9) / 24=5 / 8$.

