Fermat's Little Theorem

Tanya Khovanova

November 9, 2015

Nothing produces such odd results as trying to get even.

Class Discussion

Theorem (Fermat's Little Theorem). If p is a prime number, then for any integer a the number $a^{p}-a$ is divisible by p.

Warm Up

Exercise 1. Mrs. Fullhouse has 2 sons, 3 daughters, 2 cats and 1 dog. How many children does she have?

Exercise 2. Take 9 from 6, 10 from 9, 50 from 40 and leave 6 .
Exercise 3. What is the value of $1 / 2$ of $2 / 3$ of $3 / 4$ of $4 / 5$ of $5 / 6$ of $6 / 7$ of $7 / 8$ of $8 / 9$ of $9 / 10$ of 1000 ?

Exercise 4. 2001 AMC 8. Two dice are thrown. What is the probability that the product of the two numbers is a multiple of 5 ?

Exercise 5. 2002 AMC 8. What is the measure of the acute angle formed by the hands of a clock at 4:20 a.m.?

Number Theory

Exercise 6. Use Fermat's Little Theorem to find:

- the remainder of 19^{52}, when divided by 53 ,
- the remainder of 3^{63}, when divided by 61 ,
- the remainder of 4^{119}, when divided by 59 .

Exercise 7. Use Fermat's Little Theorem and Chinese Remainder theorem to find:

- the remainder of 13^{180}, when divided by 209,
- the remainder of 3^{73}, when divided by 91 .

Exercise 8. Prove that for any integer $a, a^{5}-a$ is divisible by 30 and $a^{11}-a$ is divisible by 66 .

Exercise 9. Given a sequence $a_{n}=1+2^{n}+3^{n}+4^{n}+5^{n}$, is it possible to find five consecutive terms of this sequence such that all of them are divisible by 2010 ?

Exercise 10. Prove that for any integer n that is not a multiple of 17 , that either $n^{8}+1$ or $n^{8}-1$ is divisible by 17 .

Exercise 11. Let p be a prime number and a is not a multiple of p. Prove that there exists an integer b such that $a b \equiv 1(\bmod p)$.

Exercise 12. Number a is three times its sum of digits. Prove that a is divisible by 27 .

Competition Practice

Exercise 13. 2002 HMMT. Find the greatest common divisor of the numbers $2002+2,2002^{2}+2,2002^{3}+2, \ldots$.

Exercise 14. 1999 HMMT. A combination lock has a 3-number combination, with each number an integer between 0 and 39 inclusive. Call the numbers n_{1}, n_{2}, and n_{3}. If you know that n_{1} and n_{3} leave the same remainder when divided by 4 , and n_{2} and $n_{1}+2$ leave the same remainder when divided by 4 , how many possible combinations are there?

Exercise 15. 2007 HMMT. Define the sequence of positive integers a_{n} recursively by $a_{1}=7$ and $a_{n}=7^{a_{n-1}}$ for all $n \geq 2$. Determine the last two digits of a_{2007}.

Exercise 16. 2002 HMMT. For how many integers $a(1 \leq a \leq 200)$ is the number a^{a} a square?

